Missing values and sparse inverse covariance estimation

نویسندگان

  • Nicolas Städler
  • Peter Bühlmann
چکیده

We propose an `1-regularized likelihood method for estimating the inverse covariance matrix in the high-dimensional multivariate normal model in presence of missing data. Our method is based on the assumption that the data are missing at random (MAR) which entails also the completely missing at random case. The implementation of the method is non-trivial as the observed negative log-likelihood generally is a complicated and non-convex function. We propose an efficient EM-algorithm for optimization with provable numerical convergence properties. We demonstrate the method on simulated and real data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing values: sparse inverse covariance estimation and an extension to sparse regression

We propose an l1-regularized likelihood method for estimating the inverse covariance matrix in the high-dimensional multivariate normal model in presence of missing data. Our method is based on the assumption that the data are missing at random (MAR) which entails also the completely missing at random case. The implementation of the method is non-trivial as the observed negative log-likelihood ...

متن کامل

A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

JPEN Estimation of Covariance and Inverse Covariance Matrix A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

0 Sparse Inverse Covariance Estimation

Recently, there has been focus on penalized loglikelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex l1 norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting “norm” is the non-convex l0 penalty but its lack ...

متن کامل

Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data

Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009